Data Quality: Where are we on the journey from theory to practice?

Angela Bonifati

University of Lyon 1 Liris – CNRS, France

June 23, 2017

Table of contents

Big Data Quality

- 2 Error types and their impact on queries
- 3 Foundations of data quality: Data Consistency and Deduplication
- 4 Comparative analysis of existing tools on various datasets
- 5 Where are we? (Future work)

Quality for Big Data

In Big Data, quantity is often more emphasized than quality:

- $\bullet\,$ scalable algorithms to compute query answers Q(D) when database D is large
- however, can we trust Q(D) as correct answers?

Quality for Big Data

In Big Data, quantity is often more emphasized than quality:

- scalable algorithms to compute query answers Q(D) when database D is large
- however, can we trust Q(D) as correct answers?
- quality is as important as quantity in big data management

Real life is flawed, inaccurate and inconsistent

- More than 25 % of critical data in the world's top companies¹ is flawed
- Pieces of information perceived as being needed for clinical decisions² are missing from 13.6% to 81% of the time
- 2% of records in a customer file become obsolete in one month
- Hence, in a customer database³, 50% of its records may be obsolete and inaccurate within two years.

¹'Dirty Data' is a Business Problem, Not an IT Problem, *Gartner*.

²D. W. Miller Jr., J. D. Yeast, and R. L. Evans. Missing prenatal records at a birth center: A communication problem quantified. *In AMIA, 2005.*

³W. W. Eckerson. Data quality and the bottom line: Achieving business success through a commitment to high quality data. *TR*, *The Data Warehousing Institute*, 2002.

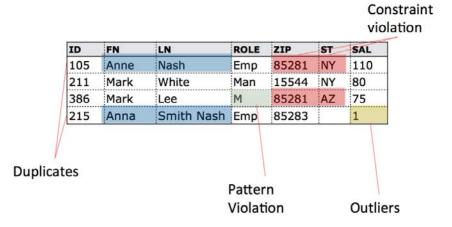
Cost of poor-quality data

- Statistics shows that "bad data or poor data quality costs US businesses \$600 billion annually"¹
- "poor data can cost businesses 20%-35% of their operating revenue"²
- "poor data across businesses and the government costs the US economy \$3.1 trillion a year"
- for Big Data, the scale of the data quality problem is historically unprecedented.

²Wikibon. A comprehensive list of big data statistics, 2012.

 $^{^{1}}$ W. W. Eckerson. Data quality and the bottom line: Achieving business success through a commitment to high quality data. *TR*, *The Data Warehousing Institute*, 2002.

Error types: an Employee Dataset T_1



• The answer is: "Anne Nash 110", "Mark White 80"

- The answer is: "Anne Nash 110", "Mark White 80"
- Can we trust this answer?

- The answer is: "Anne Nash 110", "Mark White 80"
- Can we trust this answer?
- If zip code of NYC is 85281, then also "Mark Lee 75" is part of the answer.

- The answer is: "Anne Nash 110", "Mark White 80"
- Can we trust this answer?
- If zip code of NYC is 85281, then also "Mark Lee 75" is part of the answer.
- "Anne Nash" and "Anne Smith Nash" may be the same person (which salary can we trust?)

- Data consistency refers to the validity and integrity of data
- It aims to detect errors typically identified as violations of data dependencies

- Data consistency refers to the validity and integrity of data
- It aims to detect errors typically identified as violations of data dependencies
- There are at least two questions associated with data consistency:
 - What data dependencies should we use to detect errors?
 - What repair model do we adopt to fix the errors?

- Data consistency refers to the validity and integrity of data
- It aims to detect errors typically identified as violations of data dependencies

- Data consistency refers to the validity and integrity of data
- It aims to detect errors typically identified as violations of data dependencies
- There are at least two questions associated with data consistency:
 - What data dependencies should we use to detect errors?
 - What repair model do we adopt to fix the errors?

Dependencies for Data Consistency

- Functional Dependencies (FDs) of the kind A → B, where A and B are attributes of a relation R (e.g. zip → state in T₁);
- Conditional Functional Dependencies (CFDs) that extends FDs with pattern tableaux;

Dependencies for Data Consistency

- Functional Dependencies (FDs) of the kind A → B, where A and B are attributes of a relation R (e.g. zip → state in T₁);
- Conditional Functional Dependencies (CFDs) that extends FDs with pattern tableaux;
- Denial Constraints (DCs) of the kind ∀x̄ ¬(ψ(x̄) ∧ β(x̄)), where ψ(x̄) is a non-empty conjunction of relational atoms and β(x̄) a conjunction of built-in predicates =, ≠, <, >, ≤, ≥
- Equality-generating dependencies (EGDs) ∀x̄ (ψ(x̄) → (x₁ = x₂)) as a particular case of DCs (and, btw, FDs are a special case of EGDs);

Dependencies for Data Consistency

- Functional Dependencies (FDs) of the kind A → B, where A and B are attributes of a relation R (e.g. zip → state in T₁);
- Conditional Functional Dependencies (CFDs) that extends FDs with pattern tableaux;
- Denial Constraints (DCs) of the kind ∀x̄ ¬(ψ(x̄) ∧ β(x̄)), where ψ(x̄) is a non-empty conjunction of relational atoms and β(x̄) a conjunction of built-in predicates =, ≠, <, >, ≤, ≥
- Equality-generating dependencies (EGDs) ∀x̄ (ψ(x̄) → (x₁ = x₂)) as a particular case of DCs (and, btw, FDs are a special case of EGDs);
- Tuple-generating dependencies (TGDs) of the kind
 ∀x̄ (φ(x̄) → ∃ȳ ψ(x̄, ȳ)) where φ(x̄) and ψ(x̄, ȳ) are conjunctions of relational atoms over x̄ and x̄ ∪ ȳ, resp. (subsume inclusion dependencies INDs).

Satisfiability Problem for a Class of Dependencies $\ensuremath{\mathcal{C}}$

- For a class ${\mathcal C}$ of dependencies and $\phi \in {\mathcal C},$ the satisfiability problem for C is to decide:
 - given a finite set $\Sigma \subseteq C$ defined on a relational schema R, whether there exists a nonempty finite instance D of R such that $D \models \Sigma$.
 - ${\scriptstyle \bullet}\,$ That is, whether the data quality rules in Σ are consistent themselves.

Implication Problem for a Class of Dependencies $\ensuremath{\mathcal{C}}$

- For a class Σ ⊆ C of dependencies and φ ∈ C, the implication problem for C is to decide:
 - given a finite set $\Sigma \subseteq C$ and $\phi \in C$ defined on a relational schema R, whether $\Sigma \models \phi$.
 - That is, whether data quality rules in Σ can be removed to speed up error detection and data repairing.

Complexity of satisfiability and implication analysis

dependencies	satisfiability	implication
CFDs	NP-complete	coNP-complete
FDs	O(1)	O(n)
CINDs	O(1)	EXPTIME-complete
INDs	O(1)	PSPACE-complete
CFDs + CINDs	undecidable	undecidable
FDs + INDs	O(1)	undecidable

- Data consistency refers to the validity and integrity of data
- It aims to detect errors typically identified as violations of data dependencies

- Data consistency refers to the validity and integrity of data
- It aims to detect errors typically identified as violations of data dependencies
- There are at least two questions associated with data consistency:
 - What data dependencies should we use to detect errors?
 - What repair model do we adopt to fix the errors?

- S-repair: assuming that *D* is inconsistent but complete, it allows repairs with tuple deletions only;
- C-repair: assuming that D is inconsistent and incomplete, it allows repairs with tuple insertions and deletions;
- CC-repair: looking for a C-repair that is minimal wrt. all possible repairs;
- U-repair: it supports attribute value modifications.

Foundations of Data Quality: Data Deduplication

- Data deduplication (or Record Matching) refers to identifying tuples from one or more relations that refer to the same real-world entity:
 - Given an instance D of R, a set E of entity types, a set X of attributes of R, data deduplication is to determine,
 - for all tuples t,t' in D, and for each entity type e[X], whether t[X] and t'[X] refer to the same entity of type e.

Foundations of Data Quality: Data Deduplication

- Data deduplication (or Record Matching) refers to identifying tuples from one or more relations that refer to the same real-world entity:
 - Given an instance D of R, a set E of entity types, a set X of attributes of R, data deduplication is to determine,
 - for all tuples t,t' in D, and for each entity type e[X], whether t[X] and t'[X] refer to the same entity of type e.
- There are different approaches:
 - rule-based (in this talk), probabilistic,
 - learning-based and distance-based.
- Problem: sources can be unreliable or prone to become dirty after their integration.

Record matching: an example

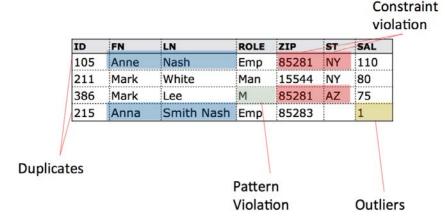
FN	LN	address	t	tel		gender
Mar	k Smit	h 10 Oak St, EDI, EH8 9L	D 325	3256777		М
the same person?						
FN	LN	post	phn when		wher	e amount
AM.	Smith	10 Oak St, EDI, EH8 9LE	> null	1pm/7/7	/09 EDI	\$3,500
Max	Smith	PO Box 25, EDI	3256777	2pm/7/7	/09 NYC	\$6,300

Matching Rules

FN	LN	address	te	el	DOB	gender	
Mark	Smith	10 Oak St, EDI, EH8 9LE	3256	777 10)/27/97	м	
	Similar #			Match		card	
FN	LN	post	phn	when	whe	ere amou	
М.	Smith	10 Oak St, EDI, EH8 9LE	null	1pm/7/7/0	9 ED	\$3,50	
	2						
Max	Smith	PO Box 25, EDI	3256777	2pm/7/7/0	9 NY	Ç \$6,30	
						, tran	

- IF card[LN, address] = trans[LN, post] AND card[FN] and trans[FN] are similar, THEN identify the two tuples
- In logics: card[LN,address]=trans[LN,post] \land card[FN] \approx trans[FN] \implies card[X] \Leftrightarrow trans[Y]

Error types: an Employee Dataset T_1 (cont'd)



Error detection strategies

- Rule-based detection algorithms
- Deduplication
- Pattern verification and enforcement tools
 - Syntactical patterns, such as date formatting
 - Semantical patterns, such as location names
- Quantitative algorithms
 - Statistical outliers

How do existing tools cover the various error types?

	DBOOSt DCClean OpenRefine Pentatio KNIME Katara Tan							
	DBOO	, oc.	De Obe	nn Trif	actipent	an KN	we tar	and Tau
Pattern violations			~	~	~	~	~	
Constraint violations		~						
Outliers	~							
Duplicates								~

Comparative analysis of DQ tools on real datasets¹

- Previous studies focused on synthetic datasets or real-world datasets with artificially injected errors
- However, the effectiveness of these tools on real-world data 'in the wild' is unclear
- Real data often contains multiple errors (duplicates plus IC violation etc.)
- All tools assume considerable human involvement, which is costly
- A comparative analysis of the above tools on various real datasets is carried out:
 - What is the precision and recall of each tool?
 - How many errors in the data sets are detectable by applying all the tools combined?
 - Is there a strategy to minimize human effort by leveraging the interactions among the tools?

¹Ziawasch Abedjan, Xu Chu, Dong Deng, Raul Castro Fernandez, Ihab F. Ilyas, Mourad Ouzzani, Paolo Papotti, Michael Stonebraker, Nan Tang: Detecting Data Errors: Where are we and what needs to be done? *PVLDB'16.*

Towards real data

Dataset	# columns	# rows	# rows ground truth	Errors
MIT VPF	42	24K	13k (partial)	6.7%
Merck	61	2262	2262	19.7%
Animal	14	60k	60k	0.1%
Rayyan Bib	11	1M	1k (partial)	35%
BlackOak	12	94k	94k	34%

	MITY	PF Ne	rck Ani	mal Rav	Nan Bib BlackO
Pattern violations	~	•	V	V	~
Constraint violations	~	•	V	V	V
Outliers	~	~		~	~
Duplicates	~				~

Lessons learned

- The conclusion of the previous study was that there is no single dominant tool.
- Various tools worked well on different data sets.
- A holistic composite strategy must be used in any practical environment.
- However, the combined overall recall is well less than 100% (even with ad-hoc cleaning service and enrichment process).
- Thus, need to develop new ways of finding data errors that can be spotted by humans.
- Cons: no real scientific data (except for Animal).

CNRS Mastodons MedClean (2016-ongoing)¹

Title

Nettoyage et transformation virtuels des grandes masses de donneés médicales et de sciences du vivant

Partners

- Liris, University of Lyon 1 (A. Bonifati, E. Coquery, M. S. Hacid, R. Thion)
- Limos, Blaise Pascal University (F. Toumani, M. Bouet, R. Ciucanu)
- Lipade, Paris Descartes University (S. Benbernou, I. Ileana, M. Ouziri. S. Sahiri)
- HEGP (A. Burgun, A. S. Janot, B. Rance)
- Institut Cochin, Inserm & INSB CNRS (P. Bourdoncle, T. Guilbert, A. Trautman)

¹https://liris.cnrs.fr/medclean/wiki/doku.php

Ongoing research objectives

Collection and annotation of datasets

- Two activities to be carried out in parallel: Clinical Data (HEGP), Biological Data (INSB).
- Complementary notions of data quality needed.
- Use-case driven understanding of the quality problems (upon image metadata for biological data, queries on clinical data).
- Real datasets (even though with confidentiality issues)
- For more details, please attend Bastien's talk in the afternoon.

Conclusions and Future Directions

Data Quality for Scientific Data

- **Data quality**: design of quality-aware algorithms for scientific datasets.
- Lack of ground truth: several open problems out there! cleaning is unfeasible

State-of-the-art and directions of research

- Existing large-scale data cleaning methods for relational databases, entity resolution for graphs....
- Combinations of data formats and additional error types: are we ready?